1,970 research outputs found

    Classical and quantum interference in multiband optical Bloch oscillations

    Full text link
    Classical and quantum interference of light propagating in arrays of coupled waveguides and undergoing multiband optical Bloch oscillations (BOs) with negligible Zener tunneling is theoretically investigated. In particular, it is shown that Mach-Zehnder-like interference effects spontaneously arise in multiband BOs owing to beam splitting and subsequent beam recombination occurring in one BO cycle. As a noteworthy example of quantum interference, we discuss the doubling of interference fringes in photon counting rates for a correlated photon pair undergoing two-band BOs, a phenomenon analogous to the manifestation of the de Broglie wavelength of an entangled biphoton state observed in quantum Mach-Zehnder interferometry.Comment: 11 pages, 4 figure

    Ultra-low threshold polariton lasing in photonic crystal cavities

    Full text link
    The authors show clear experimental evidence of lasing of exciton polaritons confined in L3 photonic crystal cavities. The samples are based on an InP membrane in air containing five InAsP quantum wells. Polariton lasing is observed with thresholds as low as 120 nW, below the Mott transition, while conventional photon lasing is observed for a pumping power one to three orders of magnitude higher.Comment: 4 pages, 3 figure

    Low-power Secret-key Agreement over OFDM

    Get PDF
    Information-theoretic secret-key agreement is perhaps the most practically feasible mechanism that provides unconditional security at the physical layer to date. In this paper, we consider the problem of secret-key agreement by sharing randomness at low power over an orthogonal frequency division multiplexing (OFDM) link, in the presence of an eavesdropper. The low power assumption greatly simplifies the design of the randomness sharing scheme, even in a fading channel scenario. We assess the performance of the proposed system in terms of secrecy key rate and show that a practical approach to key sharing is obtained by using low-density parity check (LDPC) codes for information reconciliation. Numerical results confirm the merits of the proposed approach as a feasible and practical solution. Moreover, the outage formulation allows to implement secret-key agreement even when only statistical knowledge of the eavesdropper channel is available.Comment: 9 pages, 4 figures; this is the authors prepared version of the paper with the same name accepted for HotWiSec 2013, the Second ACM Workshop on Hot Topics on Wireless Network Security and Privacy, Budapest, Hungary 17-19 April 201

    Analogue model for quantum gravity phenomenology

    Full text link
    So called "analogue models" use condensed matter systems (typically hydrodynamic) to set up an "effective metric" and to model curved-space quantum field theory in a physical system where all the microscopic degrees of freedom are well understood. Known analogue models typically lead to massless minimally coupled scalar fields. We present an extended "analogue space-time" programme by investigating a condensed-matter system - in and beyond the hydrodynamic limit - that is in principle capable of simulating the massive Klein-Gordon equation in curved spacetime. Since many elementary particles have mass, this is an essential step in building realistic analogue models, and an essential first step towards simulating quantum gravity phenomenology. Specifically, we consider the class of two-component BECs subject to laser-induced transitions between the components, and we show that this model is an example for Lorentz invariance violation due to ultraviolet physics. Furthermore our model suggests constraints on quantum gravity phenomenology in terms of the "naturalness problem" and "universality issue".Comment: Talk given at 7th Workshop on Quantum Field Theory Under the Influence of External Conditions (QFEXT 05), Barcelona, Catalonia, Spain, 5-9 Sep 200

    The effects of positive end-expiratory pressure on cardiac function: a comparative echocardiography-conductance catheter study.

    Get PDF
    BACKGROUND Echocardiographic parameters of diastolic function depend on cardiac loading conditions, which are altered by positive pressure ventilation. The direct effects of positive end-expiratory pressure (PEEP) on cardiac diastolic function are unknown. METHODS Twenty-five patients without apparent diastolic dysfunction undergoing coronary angiography were ventilated noninvasively at PEEPs of 0, 5, and 10 cmH2O (in randomized order). Echocardiographic diastolic assessment and pressure-volume-loop analysis from conductance catheters were compared. The time constant for pressure decay (τ) was modeled with exponential decay. End-diastolic and end-systolic pressure volume relationships (EDPVRs and ESPVRs, respectively) from temporary caval occlusion were analyzed with generalized linear mixed-effects and linear mixed models. Transmural pressures were calculated using esophageal balloons. RESULTS τ values for intracavitary cardiac pressure increased with the PEEP (n = 25; no PEEP, 44 ± 5 ms; 5 cmH2O PEEP, 46 ± 6 ms; 10 cmH2O PEEP, 45 ± 6 ms; p < 0.001). This increase disappeared when corrected for transmural pressure and diastole length. The transmural EDPVR was unaffected by PEEP. The ESPVR increased slightly with PEEP. Echocardiographic mitral inflow parameters and tissue Doppler values decreased with PEEP [peak E wave (n = 25): no PEEP, 0.76 ± 0.13 m/s; 5 cmH2O PEEP, 0.74 ± 0.14 m/s; 10 cmH2O PEEP, 0.68 ± 0.13 m/s; p = 0.016; peak A wave (n = 24): no PEEP, 0.74 ± 0.12 m/s; 5 cmH2O PEEP, 0.7 ± 0.11 m/s; 10 cmH2O PEEP, 0.67 ± 0.15 m/s; p = 0.014; E' septal (n = 24): no PEEP, 0.085 ± 0.016 m/s; 5 cmH2O PEEP, 0.08 ± 0.013 m/s; 10 cmH2O PEEP, 0.075 ± 0.012 m/s; p = 0.002]. CONCLUSIONS PEEP does not affect active diastolic relaxation or passive ventricular filling properties. Dynamic echocardiographic filling parameters may reflect changing loading conditions rather than intrinsic diastolic function. PEEP may have slight positive inotropic effects. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT02267291 , registered 17. October 2014

    Modelling Planck-scale Lorentz violation via analogue models

    Full text link
    Astrophysical tests of Planck-suppressed Lorentz violations had been extensively studied in recent years and very stringent constraints have been obtained within the framework of effective field theory. There are however still some unresolved theoretical issues, in particular regarding the so called "naturalness problem" - which arises when postulating that Planck-suppressed Lorentz violations arise only from operators with mass dimension greater than four in the Lagrangian. In the work presented here we shall try to address this problem by looking at a condensed-matter analogue of the Lorentz violations considered in quantum gravity phenomenology. Specifically, we investigate the class of two-component BECs subject to laser-induced transitions between the two components, and we show that this model is an example for Lorentz invariance violation due to ultraviolet physics. We shall show that such a model can be considered to be an explicit example high-energy Lorentz violations where the ``naturalness problem'' does not arise.Comment: Talk given at the Fourth Meeting on Constrained Dynamics and Quantum Gravity (QG05), Cala Gonone (Sardinia, Italy) September 12-16, 200

    Ceramic Femoral Components in Total Knee Arthroplasty - Two Year Follow-Up Results of an International Prospective Multi-Centre Study

    Get PDF
    BACKGROUND: Total knee arthroplasty can be considered as a reliable surgical procedure with a good long-term clinical result. However, implant failure due to particle induced aseptic loosening as well as the aspect of hypersensitivity to metal ions still remains an emerging issue. METHODS: The purpose of this prospective international multi-centre study was to evaluate the clinical and radiological outcomes and the reliability of the unconstrained Multigen Plus Total Knee System with a new BIOLOX® delta ceramic femoral component. Cemented total knee arthroplasty was performed on 108 patients (110 knees) at seven hospitals in three countries. Clinical and radiological evaluations were performed preoperatively, and after 3, 12 and 24 months postoperatively using the HSS-, WOMAC-, SF-36-score and standardised X-rays. RESULTS: The mean preoperative HSS-Score amounted to 55.5 ± 11.5 points and improved significantly in all postoperative evaluations (85.7 ± 11.7 points at 24 months). Furthermore, improvements in WOMAC- and SF-36-score were evaluated as significant at all points of evaluation. Radiolucent lines around the femoral ceramic component at 24 months were found in four cases. Progression of radiolucent lines was not seen and no implant loosening was observed. During the 24 month follow-up eight patients underwent subsequent surgery due to reasons unrelated to the implant material. CONCLUSIONS: The observed clinical and radiological results are encouraging for a long-term survival of the ceramic femoral component. Therefore, ceramic implants could be a promising solution not only for patients with allergies against metallic implant materials, but also for the osteoarthritic knee joint. Long-term follow-up is necessary to draw conclusions regarding the superiority of the ceramic knee implants concerning in vivo wear and long-term survivorship

    The Dipole Formalism for Next-to-Leading Order QCD Calculations with Massive Partons

    Get PDF
    The dipole subtraction method for calculating next-to-leading order corrections in QCD was originally only formulated for massless partons. In this paper we extend its definition to include massive partons, namely quarks, squarks and gluinos. We pay particular attention to the quasi-collinear region, which gives rise to terms that are enhanced by logarithms of the parton masses, M. By ensuring that our subtraction cross section matches the exact real cross section in all quasi-collinear regions we achieve uniform convergence both for hard scales Q ~= M and Q >> M. Moreover, taking the masses to zero, we exactly reproduce the previously-calculated massless results. We give all the analytical formulae necessary to construct a numerical program to evaluate the next-to-leading order QCD corrections to arbitrary observables in an arbitrary process.Comment: 71 pages, LaTeX using axodra
    • …
    corecore